Face Recognition System using Artificial Intelligent Techniques based on Hybrid Feature Selection

Chu Kai Chuan† Dzulkifli Mohamad†

Falkuti Sains Komputer dan Sistem Maklumat
Universiti Teknologi Malaysia,
81310 UTM Skudai,
Johor, Malaysia.

Abstract

This paper introduces a new solution of recognizing human faces in 2-dimensional digital images using a localization of facial parts information (such as eyes, nose, eyebrow, mouth, ears, etc), Pseudo Zernike Moment Invariants (PZMI) as feature, and Radial Basis Function (RBF) neural network as classifier. The proposed method, employs a set of different kind of feature from the face images and projected in each appropriately transform methods in parallel. Then the output of the RBF classifiers are fused together to make a decision. The proposed method can process the recognition and lends itself to higher classification accuracy by providing flexibility in dealing facial features, and not affected by irrelevant information in an image.

CR Categories: I.4.m [Image Processing and Computer Vision]; Miscellaneous; I.5.m [Pattern Recognition]: Miscellaneous

Keywords: Face Recognition, Facial Feature Extraction, Localization, Neural Network, Genetic Algorithm

1 Introduction

Face recognition is one of the physiological biometric technologies which exploit the unique features on the human face. Although face recognition may seem an easy task for human, but machine recognition is a much more daunting task [Chellappa et. al. 1995]. The difficulties due to pose, present or absent of structural components, occlusion, image orientation, facial expression and imaging conditions [Yang et. al. 2002]. For the last two decades, there has been growing interest in machine recognition of faces due to its potential applications, such as film processing, user authentication, access control system, law enforcement, etc.

Typically face recognition system should include three stages. The first stage involves detecting human face area from images, i.e. detect and locate face. The second stage requires extraction of a suitable representation of the face region. Finally the third stage classifies the facial image based on the representation obtained in the previous stage.

To design a high accuracy recognition system, the choice of feature extractor is very crucial. In general, feature extraction methods can be divided into two categories: face based and constituent based. The face based approach uses raw pixel information or features extracted from the whole image which as a representation of face. Therefore face based method use global information instead of local information. Principal Component Analysis (PCA) is a typical and successful face based method. Turk and Pentland developed a face recognition system using PCA in 1991 [Turk and Pentland 1991]. In 1997, Belhumeur et. al. proposed Fisherface technique based on Linear Discriminant Analysis (LDA) to overcome the difficulty cause by illumination variation [1997]. Haddadnia et. al. introduced a new method for face recognition using Pseudo Zernike Moment Invariants (PZMI) as features and Radial Basis Function (RBF) neural network as the classifier [2002; 2003]. Since the global information of an image are used to determine the feature elements, information that are irrelevant to facial region such as shoulders, hair and background may contribute to creation of erroneous feature vectors that can affect the face recognition results. Furthermore, due to the variation of facial expression, orientation and illumination direction, single feature is usually not enough to represent human face. So the performance of this approach is quite limited.

The second one is the constituent based approaches are based on relationship between extracting structural facial features, such as eyes, mouth, nose, etc. The constituent approaches deal with local information instead of global information. Therefore constituent based method can provide flexibility in dealing facial features, such as eyes and mouth and not affected by irrelevant information in an image. Yuille et. al. use Deformable Templates to extract facial features [1989]. These are flexible templates constructed with a priori knowledge of the shape and size of the different features [Huang and Chen 1996]. The templates can change their size and shape so that they can match properly. These methods work well in detection of the eyes and mouth, despite variations in tilt, scale and rotation of head. However modelling of the nose and eyebrow was always a difficult task [Yuille et. al. 1989; Huang and Chen 1996]. Additionally it can not deal with complicated background settings. Moreover the computation of template matching is very time consuming. In 1999, Lin and Wu presented an automatic facial feature extraction using Genetic Algorithm (GA) [1999]. Follow by 2002, Yen and Nithianandan proposed a novel method using GA to detect human facial features from images with a complex background without

*e-mail: kechuan@utm.net.my
e-mail: dzul@fksm.utm.my
imposing any constraints [2002]. The normal process of searching for the features is computationally expensive; therefore GA is used as a search algorithm [Yen and Nithianandan 2002]. Genetic algorithm possesses the following feature that makes them better suited that traditional search algorithm [Tang, et. al. 1996]. Comparing to face based approach, constituent based approach provide flexibility in dealing facial features, such as eyes and mouth and not affected by irrelevant information in an image; therefore constituent based approach is selected as a solution in this paper.

In the literature [Giacinto et. al. 2000] and [Kittler et. al. 1998], the combination of an ensemble of classifiers has been proposed to achieve image classification systems with higher performance in comparison with the best performance achievable employing a single classifier. In Multiple Classifier System [Ho et. al. 1994], different structures for combining classifier systems can be grouped in three configurations. In the first group, the classifier systems are connected in cascade to create pipeline structure. In the second group, the classifier systems are used in parallel and their outputs are combined named it parallel structure. Lastly the hybrid structure is a combination of the pipeline and parallel structure.

So this paper proposes a human face recognition that can be designed based on hybrid structural classifier system to have evolutionary recognition results by gather available information and extracting facial features from input images. In this paper Pseudo Zernike Moment Invariant (PZMI) is been used as a feature domain to extract features from facial parts. Radial Basis Function (RBF) neural network is used as the classifier in the proposed method. RBF neural network is chosen due to their simple topological structure, their locally tuned neurons and their ability to have a fast learning algorithm in comparison with the multi-layer feed forward neural network [Haddadnia et. al. 2001; Zhou 1999].

The organization of the paper is structured as follow. Face parts localization using GA, PZMI as feature domain, RBF neural network as classifier, system layout, experimental results and conclusion.

2 Facial Parts Localization using GA

This is a face segmentation and feature extraction process [Yen and Nithianandan 2002], which gathers the sub regions of right eye, left eye, mouth and nose using GA. All the images captured were head and shoulder images and in a frontal view.

2.1 Genetic Algorithm

GA is a powerful search and optimization algorithm, which are based on the theory of natural evolution. In GA, each solution for the problem is called a chromosome and consists of a linear list of codes. The GA sets up a group of imaginary lives having a string of codes for a chromosome on the computer. The GA evolves the group of imaginary lives (referred to as population), and gets and almost optimum solution for the problem. The GA uses three basic operators to evolve the population: selection, crossover, and mutation.

2.2 Face Segmentation

The face segmentation process is proceeded under the assumption that human face region can be approximated by an ellipsoid [Yokoo and Hagiwara 1996]. Therefore each chromosome in the population during the evolutionary search has five parameters genes, the centre of the ellipse (x and y), x directional radius (r_x), y directional radius (r_y) and the angle (θ). Figure 1 show the chromosome for face segmentation.

<table>
<thead>
<tr>
<th>x-8bits</th>
<th>y-8bits</th>
<th>r_x-8bits</th>
<th>r_y-8bits</th>
<th>θ-7bits</th>
</tr>
</thead>
</table>

Figure 1 – Chromosome for Face Segmentation

The fitness of the chromosome is defined by the number of edge pixels in the approximated ellipse like face to the actual number of pixels in the actual ellipse. The ratio is large when both ellipses overlap perfectly.

2.3 Feature Extraction

After the process of face segmentation, segmented image is gained to use in feature extraction process. The feature extraction is based on horizontal edge density distribution [Yen and Nithianandan 2002]. The horizontal edge map of the image from segmented image is obtained in order to extract facial features. In this method, rectangle templates of different sizes for different facial features are used. The sizes of the templates for different features are decided according to general knowledge of the size of the features. Here, both the eye and eyebrow are contained in the same rectangle template.

In order to make the search process less computational expensive, face is divided into sub regions as shows in Figure 2. The right eye is in the region E_1, left eye in the region E_2, and region M contain the mouth. The nose region N can be obtained once the eyes and mouth are located.

![Figure 2 - Sub regions of the face](image)

GA is used in the process of feature extraction to search for the global maximum point when the template best matches the feature. The chromosome for face feature extraction shown in Figure 3.

<table>
<thead>
<tr>
<th>x-direction (7 bits)</th>
<th>y-direction (7 bits)</th>
</tr>
</thead>
</table>

Figure 3 – Chromosome for face feature extraction

The chromosome represents the position of the feature in the x and y direction. The fitness is evaluated in terms of the density of
the template. The best template is selected when the fitness is maximized. The fitness, F is shown below,

$$F = \frac{1}{m \times n} \sum_{x=1}^{m} \sum_{y=1}^{n} T(x, y)$$ \hspace{1cm} (1)

where \(T(x, y) = 1 \) if the pixel is white \\
\(T(x, y) = 0 \) if the pixel is black.

and T is the template, (x, y) are the coordinates of the template, and $m \times n$ is the size of the template.

3 \hspace{1cm} PZMI as Feature Domain

PZMI is an orthogonal moment that is shift, rotation and scale invariant and very robust in the presence of noise. PZMI is been used for generating feature vector elements. Pseudo Zernike polynomials are well known and widely used in the analysis of optical systems. Pseudo Zernike polynomials are orthogonal set of complex-valued polynomials defined as [Haddadnia et. al. 2001; 2002; 2003]:

$$V_{nm}(x, y) = R_{nm}(x, y) \exp(jm \tan^{-1}(\frac{y}{x})) \hspace{1cm} (2)$$

where \(x^2 + y^2 \leq 1, \ n \geq 0, \ |m| \leq n \) and Radial polynomial R_{nm} are defined as:

$$R_{nm}(x, y) = \sum_{s=0}^{n-|m|} D_{n,|m|,s} (x^2 + y^2)^{\frac{n-s}{2}} \hspace{1cm} (3)$$

where:

$$D_{n,|m|,s} = \frac{(-1)^s}{s!(n-|m|-s)!(n-|m|-s+1)!} (2n+1-s)!$$

The PZMI can be computed by the scale invariant central moments $CM_{p,q}$ and the radial geometric moments $RM_{p,q}$ as follow:

$$PZMI_{nm} = \frac{n+1}{\pi} \sum_{m,|m|,s=0}^{n-1} D_{n,|m|,s} \sum_{a=0}^{m} \sum_{b=0}^{m} (\begin{pmatrix} m \\ a \\ b \end{pmatrix})$$

$$+ \frac{n+1}{\pi} \sum_{m,|m|,s=0}^{n-1} D_{n,|m|,s} \sum_{a=0}^{m} \sum_{b=0}^{m} (\begin{pmatrix} m \\ d \\ a \\ b \end{pmatrix})$$

$$(-j)^b RM_{2d+m-2a+b,2a+b}$$

where $k = (n-s-m)/2$, $d = (n-s-m)/2$, $CM_{p,q}$ is the central moments and $RM_{p,q}$ is the Radial moments are as follow:

$$CM_{p,q} = \frac{\mu_{p,q}}{M_{00}^{(p+q+2)/2}} \hspace{1cm} (6)$$

where $\mu_{p,q} = \sum_{x} \sum_{y} f(x, y) (x^p + y^q)^{1/2} \bar{x}^p \bar{y}^q$

$$RM_{p,q} = \frac{\sum_{x} \sum_{y} f(x, y) x^p y^q}{M_{00}^{(p+q+2)/2}} \hspace{1cm} (7)$$

where $x = x - x_0$, $y = y - y_0$ and $M_{p,q}$, $\mu_{p,q}$ and x_0, y_0 are defined as follow:

$$M_{p,q} = \sum_{x} \sum_{y} f(x, y) x^p y^q \hspace{1cm} (8)$$

$$\mu_{p,q} = \sum_{x} \sum_{y} f(x, y) (x - x_0)^p (y - y_0)^q \hspace{1cm} (9)$$

$$x_0 = M_{10} / M_{00} \hspace{1cm} (10)$$

$$y_0 = M_{01} / M_{00} \hspace{1cm} (11)$$

4 \hspace{1cm} RBF Neural Network as Classifier

RBF neural network have found to be very attractive for many engineering problem because [Yingwei et. al. 1998; Zhou 1999]:

1. They are universal approximators,
2. They have a very compact topology and
3. Their learning speed is very fast because of their locally tuned neurons.

Therefore the RBF neural network serve as an excellent candidate for pattern applications and attempts have been carried out to make the learning process in this type of classification faster then normally required for the multi-layer feed forward neural networks [Zhou 1999]. In this paper, RBF neural network is used as classifier in face recognition system.

4.1 RBF Neural Network Structure

Figure 4 shows the basic structure of RBF neural networks.

The input layer of the neural network is a set of n unit, which accept the elements of an n-dimensional input feature vector. The input units are fully connected to the hidden layer r hidden units. Connections between the input and hidden layers have unit weights and, as a result, do not have to be trained. The goal of the hidden layer is to cluster the data and reduce its dimensionality. In this structure the hidden units are referred to as the RBF units. The RBF units are also fully connected to the output layer. The output layer supplies the response of the neural network to activation pattern applied to the input layer. The transformation from the input space to the RBF-unit space is non-linear (nonlinear activation function), whereas the transformation from the RBF-
unit space to the output space is linear (linear activation function). The RBF neural network is a class of neural network where the activation function of the hidden units is determined by the distance between the input vector and a prototype vector. The activation function of the RBF units is expressed as follow [Haddadnia et. al. 2003; Yingwei et. al. 1998; Jang 1993]:

$$ R_i(x) = R_i \left(\frac{\|x - c_i\|}{\sigma_i} \right), \quad i = 1,2,\ldots, r $$ \hspace{1cm} (12)

where x is an n-dimensional input feature vector, c_i is an n-dimensional vector called the centre of the RBF unit, σ_i is the width of the RBF unit, and r is the number of the RBF units. Typically the activation function of the RBF units is chosen as a Gaussian function with mean c_i and variance vector σ_i as follow:

$$ R_i(x) = \exp \left(-\frac{\|x - c_i\|^2}{\sigma_i^2} \right) $$ \hspace{1cm} (13)

Note that σ_i^2 represents the diagonal entries of the covariance matrix of the Gaussian function. The output units are linear and the response of the jth output unit for input x is:

$$ y_j(x) = b(j) + \sum_{i=1}^{r} R_i(x) w_2(i,j) $$ \hspace{1cm} (14)

where $w_2(i,j)$ is the connection weight of the ith RBF unit to the jth output node, and $b(j)$ is the bias of the jth output. The bias is omitted in this network in order to reduce the neural network complexity [Haddadnia et. al. 2002; Zhou 1999; Jang 1993]. Therefore:

$$ y_j(x) = \sum_{i=1}^{r} R_i(x) \times w_2(i,j) $$ \hspace{1cm} (15)

5 System Layout

The layout of face recognition system has been shown in Figure 5. In the first step, facial parts localization process is done, so the exact location of the facial parts regions is localized. Secondly, sub-image of each facial parts will be created, which contain only relevant information of facial parts, such as eyes, nose, mouth, etc. Next in third stage, each of the facial parts is extracted in parallel from the derived sub-image. The fourth stage is the process of classification, which classify the facial features. Finally the last stage combines the outputs of each neural network classifier to construct the recognition.

6 Experimental Results

To validate the effectiveness of the feature of PZMI, a simple experiment was carried out. 10 human face images were taken using a monochrome CCD camera with a resolution of 768 by 576 pixels. Each of the database and the test image consists of more than 20 different head and shoulder images with at least one image per person. Some of the test images contained face that wearing glasses, facial expressions and complex backgrounds, to evaluate the robustness of the algorithm.

The GA parameter setting used for both face segmentation and facial feature extraction in the simulation is shown in Table 1.

<table>
<thead>
<tr>
<th>Face segmentation</th>
<th>Feature extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>100</td>
</tr>
<tr>
<td>Crossover</td>
<td>0.8</td>
</tr>
<tr>
<td>Mutation</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Table 1 – GA Parameters

![Figure 5 – The layout of Face Recognition System](image-url)
Figure 6 display the head and shoulder original image before the process of facial parts localization. Figure 7 shows the result after the process of facial parts localization.

![Figure 6 – Head and shoulder original image](image)

![Figure 7 – Result of Facial Parts Localization](image)

Table 2 shows some of the features extracted by PZMI using the facial parts of human faces.

<table>
<thead>
<tr>
<th></th>
<th>Person A</th>
<th></th>
<th>Person B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left eye</td>
<td>Right eye</td>
<td>Left eye</td>
<td>Mouth</td>
</tr>
<tr>
<td>PZMI 9.1</td>
<td>0.025769</td>
<td>0.030027</td>
<td>0.027727</td>
<td>0.010727</td>
</tr>
<tr>
<td>PZMI 9.2</td>
<td>0.017139</td>
<td>0.011290</td>
<td>0.012600</td>
<td>0.000254</td>
</tr>
<tr>
<td>PZMI 9.3</td>
<td>0.021621</td>
<td>0.017175</td>
<td>0.024139</td>
<td>0.008444</td>
</tr>
<tr>
<td>PZMI 9.4</td>
<td>0.002486</td>
<td>0.003062</td>
<td>0.006773</td>
<td>0.027121</td>
</tr>
<tr>
<td>PZMI 9.5</td>
<td>0.036770</td>
<td>0.035310</td>
<td>0.030024</td>
<td>0.020046</td>
</tr>
<tr>
<td>PZMI 9.6</td>
<td>0.090679</td>
<td>0.092341</td>
<td>0.091703</td>
<td>0.003933</td>
</tr>
<tr>
<td>PZMI 9.7</td>
<td>0.062495</td>
<td>0.070282</td>
<td>0.075366</td>
<td>0.011679</td>
</tr>
<tr>
<td>PZMI 9.8</td>
<td>0.082933</td>
<td>0.080637</td>
<td>0.083488</td>
<td>0.058776</td>
</tr>
<tr>
<td>PZMI 9.9</td>
<td>0.020375</td>
<td>0.014172</td>
<td>0.022936</td>
<td>0.016866</td>
</tr>
</tbody>
</table>

Table 2 – Features extracted by PZMI

Though it may argued that there exists a similar value (or closed to) among different facial features but it never happens for the entire complete set.

To investigate the recognition rate of ours method, neural network has been used. The neural network classifier was trained in each category of features vector based on the training images. The experimental results are shown in Table 3.

<table>
<thead>
<tr>
<th>Recognition rate of (%)</th>
<th>Test sample of faces without sun glasses</th>
<th>Test sample of faces with sun glasses</th>
</tr>
</thead>
<tbody>
<tr>
<td>“global” face + PZMI + RBF</td>
<td>97.17%</td>
<td>39.27%</td>
</tr>
<tr>
<td>“local” face + PZMI + RBF</td>
<td>98.76%</td>
<td>97.6%</td>
</tr>
</tbody>
</table>

Table 3 – Recognition rate of experiment

7 Conclusion

This paper presented a method for the recognition of human faces in 2-Dimensional digital images using a localization of facial parts information. The combination of an ensemble of classifiers has been used to achieve image classification systems with higher performance in comparison with the best performance achievable employing a single classifier.

References

